ЛУЧШИЕ АВТО ЛУЧШИЕ АВТО
Меню



Механический наддув.



Механические нагнетатели (по англ. supercharger) позволяют довольно простым способом существенно поднять мощность мотора. Имея привод непосредственно от коленчатого вала двигателя, компрессор способен закачивать воздух в цилиндры при минимальных оборотах и без задержки увеличивать давление наддува строго пропорционально оборотам мотора. Но у них есть и недостатки. Они снижают КПД ДВС, так как на их привод расходуется часть мощности, вырабатываемой силовым агрегатом. Системы механического наддува занимают больше места, требуют специального привода (зубчатый ремень или шестеренчатый привод) и издают повышенный шум.Существует два вида механических нагнетателей: объемные и центробежные.
Типичными представителемя объемных нагнетателей являются нагнетатель Roots и компрессор Lysholm.
Конструкция Roots напоминает масляный шестеренчатый насос. Два ротора вращаются в противоположные стороны внутри овального корпуса. Оси роторов связаны между собой шестернями. Особенность такой конструкции в том, что воздух сжимается не в нагнетателе, а снаружи – в трубопроводе, попадая в пространство между корпусом и роторами. Основной недостаток – в ограниченном значении наддува. Как бы безупречно ни были подогнаны детали нагнетателя, при достижении определенного давления воздух начинает просачиваться назад, снижая КПД системы. Способов борьбы немного: увеличить скорость вращения роторов либо сделать нагнетатель двух- и даже трехступенчатым. Таким образом можно повысить итоговые значения до приемлемого уровня, однако многоступенчатые конструкции лишены своего главного достоинства – компактности. Еще одним минусом является неравномерное нагнетание на выходе, ведь воздух подается порциями. В современных конструкциях применяются трехзубчатые роторы спиральной формы, а впускное и выпускное окна имеют треугольную форму. Благодаря этим ухищрениям нагнетатели объемного типа практически избавились от пульсирующего эффекта. Невысокие скорости вращения роторов, а следовательно, долговечность конструкции вкупе с низким шумом привели к тому, что ими щедро оснащают свою продукцию такие именитые бренды, как DaimlerChrysler, Ford и General Motors. Объемные нагнетатели поднимают кривые мощности и крутящего момента, не изменяя их формы. Они эффективны уже на малых и средних оборотах, а это наилучшим образом сказывается на динамике разгона. Проблема лишь в том, что подобные системы очень прихотливы в изготовлении и установке, а значит, довольно дороги.
Еще один способ нагнетать во впускной коллектор воздух под избыточным давлением в свое время предложил инженер Лисхольм (Lysholm). Его детище окрестили винтовым нагнетателем, или «double screw» (двойной винт). Конструкция наддува Лисхольма чем-то напоминает обычную мясорубку. Внутри корпуса установлены два взаимодополняющих винтовых насоса (шнека). Вращаясь в разные стороны, они захватывают порцию воздуха, сжимают и загоняют ее в цилиндры. Характерна такая система внутренним сжатием и минимальными потерями, благодаря точно выверенным зазорам. Кроме того, винтовые наддувы эффективны практически во всем диапазоне оборотов двигателя, бесшумны, очень компактны, но чрезвычайно дороги из-за сложности в изготовлении. Однако ими не брезгуют такие именитые тюнинг-ателье, как AMG или Kleemann.Центробежные нагнетатели по конструкции напоминают турбонаддув. Избыточное давление во впускном коллекторе также создает компрессорное колесо (крыльчатка). Его радиальные лопасти захватывают и отбрасывают воздух в окружной тоннель при помощи центробежной силы. Отличие от турбонаддува лишь в приводе. Центробежные нагнетатели страдают аналогичным, хотя и менее заметным инерционным пороком, но есть и еще одна важная особенность. Фактически величина производимого давления пропорциональна квадрату скорости компрессорного колеса. Проще говоря, вращаться оно должно очень быстро, чтобы надуть в цилиндры необходимый воздушный заряд, порой в десятки раз превышая обороты двигателя. Эффективен центробежный нагнетатель на высоких оборотах. Механические «центробежники» не так капризны в обслуживании и долговечнее газодинамических собратьев, поскольку работают при менее экстремальных температурах. Неприхотливость, а следовательно, и дешевизна конструкции снискали им популярность в сфере любительского тюнинга.Схема управления механическим нагнетателем довольно проста. При полной нагрузке заслонка перепускного трубопровода закрыта, а дроссельная открыта — весь поток воздуха поступает в двигатель. При работе с частичной нагрузкой дроссельная заслонка закрывается, а заслонка трубопровода открывается — избыток воздуха возвращается на вход нагнетателя. Входящий в схему охладитель наддувочного воздуха (Intercooler) является почти непременной составной частью не только механических, но и газотурбинных систем наддува. При сжатии в компрессоре (либо в нагнетателе) воздух нагревается, в результате чего его плотность уменьшается. Это приводит к тому, что в рабочем объеме цилиндра воздуха, а, следовательно, и кислорода, по массе помещается меньше, чем могло бы поместиться при отсутствии нагревания. Поэтому сжатый воздух перед подачей его в цилиндры двигателя предварительно охлаждается в интеркулере. По своей конструкции это обычный радиатор, который охлаждается либо потоком набегающего воздуха, либо охлаждающей жидкостью. Понижение температуры наддувочного воздуха на 10 градусов позволяет увеличить его плотность примерно на 3%. Это, в свою очередь, позволяет увеличить мощность двигателя примерно на такой же процент.
Механический наддув.
Механический наддув.
Механический наддув.
Механический наддув.
Механический наддув.




Коленчатый вал – один из наиболее ответственных и дорогостоящих конструктивных элементов двигателя внутреннего сгорания. Он преобразует возвратно-поступательное движение поршней в крутящий момент. Коленчатый вал воспринимает периодические переменные нагрузки от сил давления газов, а также сил инерции движущихся и вращающихся масс.



Коленчатый вал двигателя, как правило, цельный конструктивный элемент, поэтому правильно его называть деталью. Вал изготавливается из стали с помощью ковки или чугуна путем литья. На дизельных и турбированных двигателях устанавливаются более прочные стальные коленчатые валы.
Схема коленчатого вала

Схема коленчатого вала

Конструктивно коленчатый вал объединяет несколько коренных и шатунных шеек, соединенных между собой щеками. Коренных шеек, как правило, на одну больше, а вал с такой компоновкой называется полноопорным. Коренные шейки имеют больший диаметр, чем шатунные шейки. Продолжением щеки в противоположном от шатунной шейки направлении является противовес. Противовесы уравновешивают вес шатунов и поршней, тем самым обеспечивают плавную работу двигателя.

Шатунная шейка, расположенная между двумя щеками, называется коленом. Колена располагаются в зависимости от числа, расположения и порядка работы цилиндров, тактности двигателя. Положение колен должно обеспечивать уравновешенность двигателя, равномерность воспламенения, минимальные крутильные колебания и изгибающие моменты.

Шатунная шейка служит опорной поверхностью для конкретного шатуна. Коленчатый вал V-образного двигателя выполняется с удлинёнными шатунными шейками, на которых базируется два шатуна левого и правого рядов цилиндров. На некоторых валах V-образных двигателей спаренные шатунные шейки сдвинуты относительно друг друга на угол 18°, что обеспечивает равномерность воспламенения (технология носит название Split-pin).

Наиболее нагруженным в конструкции коленчатого вала является место перехода от шейки (коренной, шатунной) к щеке. Для снижения концентрации напряжений переход от шейки к щеке выполняется с радиусом закругления (галтелью). Галтели в совокупности увеличивают длину коленчатого вала, для уменьшения длины их выполняют с углублением в щеку или шейку.

Вращение коленчатого вала в опорах, а шатунов в шатунных шейках обеспечивается подшипниками скольжения. В качестве подшипников применяются разъемные тонкостенные вкладыши, которые изготавливаются из стальной ленты с нанесенным антифрикционным слоем. Проворачиванию вкладышей вокруг шейки препятствует выступ, которым они фиксируются в опоре. Для предотвращения осевых перемещений коленчатого вала используется упорный подшипник скольжения, который устанавливается на средней или крайней коренной шейке.
Схема системы смазки

Схема системы смазки

Коренные и шатунные шейки включены в систему смазки двигателя. Они смазываются под давлением. К каждой опоре коренной шейки обеспечивается индивидуальный подвод масла от общей магистрали. Далее масло по каналам в щеках подается к шатунным шейкам.

Отбор мощности с коленчатого вала производится с заднего конца (хвостовика), к которому крепится маховик. На переднем конце (носке) коленчатого вала располагаются посадочные места, на которых крепятся шестерня (звездочка) привода распределительного вала, шкив привода вспомогательных агрегатов, а также в ряде конструкций – гаситель крутильных колебаний. По конструкции это два диска и соединяющий их упругий материал (резина, силиконовая жидкость, пружина), который поглощает вибрации вала за счет внутреннего трения.

К фото:

1. носок коленчатого вала;
2. посадочное место звездочки (шестерни) привода распределительного вала;
3. отверстие подвода масла к коренной шейке;
4. противовес;
5. щека;
6. шатунные шейки;
7. фланец маховика;
8. отверстие подвода масла к шатунной шейке;
9. противовесы;
10. коренные шейки;
11. коренная шейка упорного подшипника
Коленчатый вал – один из наиболее ответственных и дорогостоящих конструктивных элементов двигателя внутреннего сгорания. Он преобразует возвратно-поступательное движение поршней в крутящий момент. Коленчатый вал воспринимает периодические переменные нагрузки от сил давления газов, а также сил инерции движущихся и вращающихся масс.


ЛУЧШИЕ АВТО Яндекс.Метрика
укладання плитки на стіну Молодежь Інформація про будівництво та ремонт Кулинарная школа Стерва